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ABSTRACT

In this paper we further explore a class of high order TVD (total variation diminishing)

Runge-Kutta time discretization initialized in [12], suitable for solving hyperbolic conser-

vation laws with stable spatial discretizations. We illustrate with numerical examples that

non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even

for TVD (total variation diminishing) spatial discretization, verifying the claim that TVD

Runge-Kutta methods are important for such applications. We then explore the issue of

optimal TVD Runge-Kutta methods for second, third and fourth order, and for low storage

Runge-Kutta methods.
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1 Introduction

In this paper we further explore a class of high order TVD (total variation diminishing)

Runge-Kutta time discretization initialized in [12]. For related work of multi-step type see

[11]. The method is used to solve a system of ODEs:

ut = L(u) (i.i)

with suitable initial conditions, resulting from a method of lines approximation to a hyper-

ut = -f(u)x (1.2)

bolic conservation law:

where the spatial derivative f(u)_ is approximated by a TVD finite difference or finite element

approximation (e.g. [4], [8], [13], [2]), denoted by -L(u), which has the property that the

total variation of the numerical solution:

TV(1t) = E lltJ+I -- ttJl (1.3)

J

does not increase

rV(u < TV(u n)

for a first order in time Euler forward stepping:

U TM = U n -3l- AtL(u n)

(1.4)

(1.5)

under suitable restriction on At:

At < At1. (1.6)

The objective of the high order TVD Runge-Kutta time discretization, is to maintain the

TVD property (1.4) while achieving higher order accuracy in time, perhaps with a different

time step restriction than (1.6):

At <_ cat,. (1.7)

where c is termed CFL coefficient for the high order time discretization.



The TVD high order time discretizationisusefulnot only for TVD spatialdiscretizations,

but alsofor TVB (total variation bounded)(e.g. [10]),or ENO (EssentiallyNon-Oscillatory)

(e.g. [5], [12]),or other types of spatial discretizationsfor hyperbolicproblems. It maintains

stability in whatevernorm, of the Euler forward first order time stepping, for the high order

time discretization,under the time steprestriction (1.7). For example,if it is usedfor multi

spacedimensionalscalar conservationlaws, for which TVD is not possiblebut maximum

norm stability can be maintained for high order spatial discretizationsplus Euler forward

time stepping (e.g. [3]), then the samemaximum norm stability can be maintained if TVD

high order time discretization is used.As another example,if an entropy inequality can be

proved for the Euler forward, then the sameentropy inequality is valid under a high order

TVD time discretization.

In [12], a generalRunge-Kutta method for (1.1) is written in the form:

i-1

= X + i= 1,...,m (1.s)
k----O

U(O) = U n, U(m) --- un+l

Clearly, if all the coefficients are nonnegative aik >_ O, flik >_ O, then (1.8) is just a convex

combination of Euler forward operators, with At replaced by z_*At since by consistency
, Oqk

i--1
_k=0 a/k = 1. We thus have

Lemma 1.1. [12] The Runge-Kutta method (1.8) is TVD under the CFL coefficient (1.7):

c = min a/___kk (1.9)
i,k flik '

provided that aik >_ O, flik >>_O.

O

In [12], schemes up to third order were found to satisfy the conditions in Lemma 1.1 with

CFL coefficient, equal to 1.

If we only have aik > 0 where fl, k might be negative, we need to introduce an adjoint

operator L. The requirement for L is that it approximates the same spatial derivative(s) as



L, but is TVD (or stable in another relevant norm) for first order Euler, backward in time:

It n+l = U n -- AtL(I/n) (1.10)

This can be achieved, for hyperbolic conservation laws, by solving the backward in time

version of (1.2):

ut-- f(u)x. (1.11)

Numerically, the only difference is the change of upwind direction. Clearly, L can be com-

puted with the same cost as that of computing L. We then have the following lemma:

Lemma 1.2. [12] The Runge-Kutta method (1.8) is TVD under the CFL coefficient (1.7):

c = min ai.____k (1.12)
I i l'

provided that _ik >_ 0, and L is replaced by Z for negative flik-

[]

Notice that, if for the same k, both L(u (k)) and L(u (k)) must be computed, the cost as

well as storage requirement for this k is doubled. For this reason, we would like to avoid

negative flik as much as possible. In [12], two L's were used to give a fourth order TVD

Runge-Kutta method with a CFL coefficient c = 0.87. We will improve it in this paper,

however unfortunately we also prove that all four stage, fourth order Runge-Kutta methods

with positive CFL coefficient c in (1.12) must have at least one negative flik.

For large scale scientific computing in three space dimensions, storage is usually a paramount

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15],

[1], which only require 2 storage units per ODE equation. We will consider in this paper

TVD properties among such low storage Runge-Kutta methods.

In the next section, we will give numerical evidence to show that, even with a very nice

second order TVD spatial discretization, if the time discretization is by a non-TVD but

linearly stable Runge-Kutta method, the result may be oscillatorv. Thus it would always be

safer to use TVD Runge-Kutta methods for hyperbolic problems.



The investigation of TVD time discretization can also be carried out for the general-

ized Runge-Kutta methods (which have more than one step) in, e.g., [6] and [7]. We have

performed this study but failed to find good (in terms of CFL coefficients and whether ],

appears) TVD methods in this class. The result will not be discussed in this paper.

2 The Necessity to Use a TVD

Numerical Example

Time Stepping: A

In this section we will show a numerical example, using the standard minmod based MUSCL

second order spatial discretization [14]. We wilt compare the results of a TVD versus a

non-TVD second order Runge-Kutta time discretizations. The PDE is the simple Burgers

equation

with a Riemann initial data:

2"

1, if x < 0
U(X, O) ! -0.5, if x>0

u_ in (2.1) is approximated by the conservative difference

Ax '

^

where the numerical flux fj+½ is defined by

(2.2)

with

1

u73+_1= uj-4--_minmod(uj+l-uj, Uj--Uj-1),

The monotone flux h is the Godunov flux

h(u_,u+) = { min,,-<,,<u+ (_),

1

u++½ = uj+,-_minmod(uj+2-uj+l

if u- < u +

if u- > u +

, Uj+ 1 --Uj)
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and the now standard rninrnod function is given by

sign(a) + sign(b) min(lal, Ibl).
rninmod(a, b) = 2

It is easy to prove, by using Harten's Lemma [4], that the Euler forward time discretization

with this second order MUSCL spatial operator is TVD under the CFL condition (1.6):

Ax
At <

- 2maxjlull
I J I

(2.3)

Thus At -- _'_ will be used in all our calculations.
2 maxj lu2l

The TVD second order Runge-Kutta method we consider is the one given in [12]:

U(1) _ tl rt AV AtL(u _)

u n+ 1 --- _U n + 2 u( ) +

the non-TVD method we use is:

(2.4)

U (1)

un+ 1

= u _- 20AtL(u _)

41
AtL(u n) -- 1-_/kti(u(1)).= un+_ _O

(2.5)

It is easy to verify that both methods are second order accurate in time.

If the operator L is linear (for example the first order upwind scheme applied to a linear

PDE), then both Runge-Kutta methods (actually all the two stage, second order Runge-

Kutta methods) yield identical results (the two stage, second order Runge-Kutta method for

a linear ODE is unique). However, since our L is nonlinear, we may and do observe different

results when the two Runge-Kutta methods are used.

In Figure 1 we show the result of the TVD Runge-Kutta method (2.4) and the non-TVD

method (2.5), after the shock moves about 50 grids (400 time steps for the TVD method,

.528 time steps for the non-TVD method). We can clearly see that the non-TVD result is

oscillatory (there is an overshoot).
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Figure 1: Second order TVD MUSCL spatial discretization. Solution after 500 time steps.

Left: TVD time discretization (2.4); Right: non-TVD time discretization (2.5).

Such oscillations are also observed when the non-TVD Runge-Kutta method coupled with

a second order TVD MUSCL spatial discretization is applied to a linear PDE (ut + ux = 0).

Moreover, for some Runge-Kutta methods, if one looks at the intermediate stages, i.e. u (i)

for 1 _< i < rn in (1.8), one observes even bigger oscillations. Such oscillations may render

difficulties when physical problems are solved, such as the appearance of negative density

and pressure for Euler equations of gas dynamics. On the other hand, TVD Runge-Kutta

method guarantees that each middle stage solution is also TVD.

This simple numerical test convinces us that it is much safer to use a TVD Runge-Kutta

method for solving hyperbolic problems.

3 The Optimal TVD Runge-Kutta Methods of Sec-

ond, Third and Fourth Order

In this section we will try to identify the optimal (in the sense of CFL coefficient and the

cost incurred by ], if it appears) TVD Runge-Kutta methods of m-stage, rn-th order, for

rn = 2, 3, 4, written in the form (1.8).

For second order rn = 2, we can choose _]0 and _21 as free parameters. The other



coefficientsare then given as[12]:

_10 ---- 1

0'20 _ 1 -- C_21

/320 = 1 1
2_31o

_21 -- 1
2t31o

0_21/310
(3.1)

Proposition 3.1. If we require c_ik _> 0 and /3,k _> 0, then the optimal second order TVD

Runge-Kutta method (1.8) is given by

It(1) ___ U n + AtL(u n) (3.2)

! 1 _AtL(u(I)),U n+l __ _tl n + 2 u( ) +

with a CFL coefficient c = 1 in (1.9).

Proof: If we would like a CFL coefficient c > 1, then ax0 = 1 implies ]310 < 1, which in turn

1 We thus have1 1 Also, > 321 -- 1 which implies 0_21fll 0 > _.implies _ > 3" c_21 - 2--_-g_0'

1 1 1
320 = 1 a21/31o < 1 - O,

2/310 2 2

which is a contradiction.

[]

For the third order case m = 3, the general Runge-Kutta method consists of a two

parameter family as well as two special cases of one parameter families [9]. We can similarly

prove the following proposition:

Proposition 3.2.

Runge-Kutta method (1.8) is given by

U(1) = U n + AtL(u'_) "

3Un !It(i) ..__ _Ati(u (1))u(2) = 4 + 4

'Lln+l _---_un+2-u(2)+_ AtL(uO))'3

with a CFL coefficient c = 1 in (1.9).

Proof: The proof is more technical, and is given in the Appendix.

If we require Otik > 0 and 3ik >_ O, then the optimal third order TVD

(3.3)



[]

For the fourth order case m = 4, the general Runge-Kutta method again consists of a two

parameter family as well as three special cases of one parameter families [9]. Unfortunately,

this time we cannot avoid the appearance of negative 13_k:

Proposition 3.3. The four stage, fourth order Runge Kutta scheme (1.8) with a nonzero

CFL coefficient c in (1.12) must have at least one negative _ik.

Proof: The proof is technical, and is given in the Appendix.

[]

We thus must settle for finding an efficient solution containing L, which maximizes _+i,

where c is the CFL coefficient (1.12) and i is the number of Ls. This way we are looking for

a TVD method which reaches a fixed time T with a minimal number of residue evaluations

for L or L. We use a computer program and the help of optimization routines to achieve

this goal. The following is the best method we can find:

u (1) =

u(2) _

u(3) _

u "_+ 2AtL(u'_)

649 u(0) 10890423 AtL(un ) + 951 u(1) + _5000 1
1600 25193600 160----O 7873 AtL(u(

))

53989 un 102261 At].(un) + 4806213 ?.t(l)

2500000 5000000 20000000

5121 " '1" 23619 _2_ "
20-_-0 AtL(ut ') + .3-_6-6 u" " + _ AtL(u(2})

(3.4)

1 _oAtL(u_ ) 6127 i1' _AtL(u(1)) 7873 ,:_ 1 3 6AtL(u(3))un+ 1 = _u n + + + + + - +5 _u'J _u'' 3 u()

with a CFL coefficient c = 0.936 in (1.12). Notice that two ]_,s must be computed. The

4 = 0.624.effective CFL coefficient, comparing with an ideal case without Ls, is 0.936 × g

Since it is difficult to solve the global optimization problem, we do not claim that (3.4) is

the optimal 4 stage, 4th order TVD Runge-Kutta method.



4 The Low Storage TVD Runge-Kutta Methods

For large scale scientific computing in three space dimensions, storage is usually a paramount

consideration. Therefore, there are discussions about low storage Runge-Kutta methods [15],

[1], which only require 2 storage units per ODE variable. We will consider in this section

TVD properties among such low storage Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form [15], [1]:

du (i) =_ Aidu (i-l) + AtL(u (i-1))

u (i) = u (i-1)-]-Bidu (i), i= 1,...,m

u (°) _ u (m) = u TM Ao 0

(4.1)

Only u and du must be stored, resulting in two storage units for each variable.

Carpenter and Kennedy [1] have classified all the three stage, third order (m=3) low

storage Runge-Kutta methods, obtaining the following one parameter family:

Z 1

Z 2

Z 3 _-

Z 4

Z 5 ---_

Z 6

//1 ----

B2 -----

/?3 =

A2 =

A3 =

ff36c 4 + 36cz3 - 135c 2 + 8@2 - 12

2c_ + c2 - 2

12c 4 - 18c_ + 18c 2 - 11c2 + 2

36c 4 - 36c_

69c_ -62c_

34c 4 -46c_

+ 13c_ - 8c2 + 4

-}-28c2 - 8

+ 34c_ - 13c2 + 2

C2

12c2(c2 - 1)(3z2 - Zl) - (3z2 - z1) 2

144c2(3c2- 2)(c2- 1) 2

-24(3c2 - 2)(c2 - 1) 2

(3z2- z,) 2- 12c2(c2 -: 1)(3z2- z,)

-z,(6c_ - 4c2 + 1) + 3z3

(2Ce + 1)z, - 3(c2 + 2)(2c2 - 1) 2

--Z4Z 1 "_ 108(2C2 - 1)c_ - 3(2c2- 1)zs

24z,c2(c2- 1) 4 -Jr-72c2z6 + 72c6(2c2- 13)

(4.2)



Which is converted into the form of equation (1.8), by introducing three new parameters.

Then we search for values of these parameters that would maximize the CFL restriction,

again by a computer program. The result seems to indicate that

c2 = 0.924574 (4.3)

gives an almost best choice, with CFL coefficient c = 0.32 in (1.9). This is of course less

optimal than (3.3) in terms of CFL coefficients, however the low storage form is useful for

large scale calculations.

Carpenter and Kennedy [1] have also given classes of 5 stage, 4th order low storage Runge-

Kutta methods. We have been unable to find TVD methods in that class with positive _ik

and /3ik. Notice that L cannot be used without destroying the low storage property, hence

negative/3ik cannot be used here.

5 Concluding Remarks

We have given a simple but illustrating numerical example to show that it is in general much

safer to use a TVD Runge-Kutta method for hyperbolic problems. We then explore the

optimal second, third and fourth order TVD Runge-Kutta methods. While for second and

third order optimal methods are found with a CFL coefficient equal to one, for fourth order

we simply give the best method we can find. A TVD third order low storage Runge-Kutta

method is found, which uses only two storage units per equation and has a CFL coefficient

equal to 0.32. Finally, we prove that general four stage fourth order Runge-Kutta methods

can not be TVD without introducing an adjoint operator L.

Acknowledgments: W'e would like to thank Mordechai Berger and Mark Carpenter for

helpful discussions.
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6 Appendix

In this appendix we prove Proposition 3.2 and Proposition 3.3.

We write the general 4 stage, 4th order Runge-Kutta method in the following standard

form [9]:

U(1) __

u (2)

u(a)

_/n+l

u n + cloL(u '_)

= _'_+ c_oAtr(un) + C_lAtr(ut'))

= u_ + C3oAtL(u _) + CslAtL(u (_)) + c3_AtL(u (2))

= _ + c.oAtr(_ _) + c.,/xtt(,21)) + c._xtt(u _)) + c._/xtt(u TM)

The relationship between the coefficients cik here and aik and /3ik in (1.8) is:

Clo _ /_10

c2o = 73:o+ a21310

C21 _ _21

(6.1)

c3o = c_32_21_310+ _31t310+ _32/320+/_30

12



C31 _ 0f32/_21 At- /_31

C32 _--- _32

c40 = 043_z_02_/_0 + 043032¢_0 + c_43031fl10 + 042021_10

+041_10 + 042320 + 043/330 + _40

C41 = 0t43032_321 "_- 042_21 -3!- 043_31 "3V /341

C42 = 0t43/_32 + _42

C43 _ _43

(6.2)

For a third order Runge-Kutta method, the general form (6.1) is similar without the last

line (and with u TM replaced by u "+1). The relationship (6.2) also is similar without the last

four lines for c40, c41, c42 and c43.

Proof of Proposition 3.2:

The general third order, three stage Runge-Kutta method in the form (6.1) is given by a

two parameter family as well as by two special cases of one parameter families [9].

2.

• General Case: If 03 -_ 02, 03 ¢ 0, 02 # 0 and 02 # 5"

Clo

C20

C21

C30

C31 :

C32 :

02

30203(1 -- 02) -- a_

o_(2 - 3o2)

02(2 - 302)

2 - 3(c_2 + 03)
1+

60_203

303 -- 2

602(o3 - 02)

2 - 302

60_3(013 -- 02)

Notice that 6Cr2C21C32 = 1 and c20 + c21 = 03. If we want to have a CFL coefficient

c > 1 in (1.9), we would need aik >/3ik k 0 unless both of them are zeroes. This also

13



implies that cik _> 0 by (6.2). Also, notice that ci,i-1 =/3i,i-x > 0, otherwise that stage

is not necessary.

Now, ClO =/31o < alo = 1 and clo > 0 imply 0 < or2 < 1.

1. C_3> _2-

2
2 and > 0 requires a3 > 5"cn > 0 implies a2 < 5, C31 --

320 _> 0 and c*21 > 321 imply C2o >_ 021310 > 321310, which is a3 - c21 > c21ct2, or

> c21. So we must have
1+c_2

3a2 - 2a 2
a3 <

1 +a2

_ 1
On the other hand, 331 _> 0 requires c31 _> aa23n > C32C21 -- 6--g7' which is

3a3-2 > a3-a2, or

1
a3 > 1 - =a2

2

Combining these two inequalities, we get 1 - 7a21 < a_2-2_==1+,,2 , or (2- 3a2)(1 -a2) <

O, which is a contradiction, since 2 - 3a2 > 0 and 1 - a2 > O.

2. a2 > _3.

(3'3 = C20 -Jr- C21 > 0 requires C_3 > O.

2
C32 > 0 requires a2 > 2, and c31 k 0 requires a 3 < 3"

1 , which isc31 _> a32321 > ¢32¢21 - 6c_2

1
a3 < 1 - =a2,

2

C20 >__ &21310 > 321310 requires

02(3 -- 2a2)
c_3 >

1 +a2

Putting these two inequalities together, we have °¢2/3-2°_2) 11+_2 < 1- which7a2, means

(2 - 3a2)(1 - a2) > O, a contradiction since 1 - a2 > 0 and 2 - 3a2 < O.

14



2 In this case• Special Case I: a2 = a3 = 5"

2
Clo --

3
2 1

C20 --
•3 4w3

1
C21 --

4t_3

1
C30 --" _

4
3

C31 -- _)3
4

C32 ----- 0.) 3

1
1 which implies w3 < 7"/331 >_ 0 and a32 >/332 = c32 requires ¢31 k (_32/321 > C32/321 =

2 C/320 >_ 0 and a21 >/321 = c21 requires C2o _> O_21/310 > _ 21, which means - - --

.5 A contradiction.for which we must, have _3 > g.

2 I >21
3 4¢z 3 3 4w3

• Special Case II: o3 = O. In this case the equations read

2
CIO = --

3
1

C20 --
4w3

1
C21 --

4w3
1

C30 _- -- __ U._3
4
3

C31 = --
4

C32 -- 0.23

Clearly C2o and C21 cannot be simultaneously nonnegative.

• Special Case III: a2 = O. In this case the method is not third order.

D

15



Proof of Proposition 3.3:

Recall that all the aik's must be nonnegative to satisfy our TVD criteria. From the

relationship (6.2) between the coefficients of (6.1) and of (1.8), we can see that nonnegative

3ik's imply nonnegative cik's. We now show that we cannot have all nonnegative cik's.

• General Case. If two parameters 02 and 03 are such that: 02 _ 03, 02 ¢ 1, 02 7_ 0,

1 and 60203 - 4(02 + 03) + 3 -¢ 0. Then the coefficientsc_2 7_ ½, 03 :_ 1, 03 -¢ 0, c_3 7t 7,

cik are [9]"

C10 _ Ct2, C20 _ O 3 -- C21 _ C21 _ 2c_2(1_2c_2)_

(1-c_2)[a2+a3 -1-{2_3-1) 2] {1-2c_2)(1 -c_2)(1-a3)
c30 = 1 - c31 - c32, c31 - 2c_2(_,3__2)[6ot2ot3_4(a2+(_3)+3], c32 = c_3(_3__,2)[6ot2_,3_4(ot2+ot3)+3 ] ,

C40 = 7 -I" 12_2_3 ,,C4] -- 12_2(o,3_e2)(l_ot2), C42 -- 120_3(O_3__Ot2)(l_Or3),C43= 7- t-12(1__cr2)(1___3) "

There are five possibilities to consider:

1. o2 < 0 implies c]0 < 0.

1.
2. 03>02>0and0<02 < 7"

a > 0 requires 03 < 302 --4og < 9 C32 > 0 andc41 _> 0 requires o3 > 7 c20 _ _ _ . _

c31 _> 0 require that o2 > 2 - 503 + 4032. Since this is a decreasing function of o3

when 03 _< 9, we obtain 02 >_ 2 - 5(302 - 40_) + 4(302 - 4022) 2. Rearranging,

we find that 0 _> 2((2o2 - 1) 2 + 402) (202 - 1) 2, which is impossible.

1.
3. 0 3 < 02 and 02 > _.

c42 >_ 0 requires 0 < 03 < 1.

We can only have c32 _> 0 in one of two ways:

(a) If 1 - 02 > 0, and 6o2o3 - 4(02 + 03) + 3 > 0.

1 Simple calculation yields c30 1c41 _> 0 requires o3 < 7" - = -- c31 - c32 =

(2--6o_2 +4c_)+(-- 5+ 15c_2-- 12_ )c_3 +(4--12c_2 + 120'_ )a'_
2_2(_3(6c_2o3-4(c_2+_3)+3) , hence C3o > 0 requires

A+ Bo3+Cc_ =-(2-602+4022)+(-5+15o2-120,2)03+(4-1202+120_)a_ > 0
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1
It is easy to show that, when _ < a2 < 1, we have A < 0, B < 0 and C > 0.

Thus, for 0 < a3 < ½, we have

(A+Baz+Ca_<max A,A+2 + C =max A, 2

which is a contradiction.

(b) a2 > 1, and 6a2a3 - 4(a2 + a3) + 3 < 0.

c31 _> 0 requires a2 + a3 - 1 - (2a3 - 1) 2 < 0, which implies

(1- 4 3)(1 - = + 1 > 1>0.

1
Clearly, this is true only if a3 < 5"

Now, C4o >_ 0 requires that 0 _< 6a2a3 - 2(a2 + a3) + 1 = 2a3(3a2 - 1) + (1 -

2a2) < ½(3c_2 - 1) + (1 - 2a2) = ½(1 - c_2), an apparent contradiction.

1 and a3 < a2: in this case we can see immediately that c42 < 0.4. O<a2<_

1
5. If _ < a2 < a3, c21 < 0.

• If 6a2a3 - 4(a2 + a3) + 3 = 0, or if as = 0 or if a3 = 1, then this method is not fourth

order [9].

l In• Special Case I. If as = a3 the method can be fourth order only if a2 = a3 = _.

1 1 1 3w3,this case [9] qo = ½, C2o - 2 6_,z, c2a - 6,,3, C3o = 0, c31 = 1 -3w3, c32 =

2 1
C40 _- 1 C41 _ 3 _ W3 ' C42 = tO3_ C43 _ _.

1 a > 0,Clearly we need to have c42 = w3 _> 0. To have c3a = 1 -3w3 _> 0 and c20 - 2 6,_ -

1 This leads to the classical fourth order Runge-Kutta method.we require w3 = _.

_0-z_0 _ 2/32o. This is only acceptable if c_2a = /32o = 0. ButClearly, then, cr21 = -z_0

,321 = ½, so in the case where all/3ik's are nonnegative, the CFL coefficient (1.12) is

equal to zero.

1 Then• Special Case II. If a2 = 1, the method can be fourth order only if c_3 = _.

[ ] 3 1 1 1 1 19 C10 : 1, C20 = _, C21 : _, C30 _--- --C31 --C32' C31 -- 12w4' C32 : 3_w4' C40 : 6'

1 2
C4a _- _ -- 1/34, C42 = _, C43 : W4.
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x > 0 which meansw4 < 0. But then c43 = w4 < 0. SoIn this case we want c31 - 12w4 -

this case does not allow all nonnegative/3ik's.

1 Then [9]• Special Case III. If c_3 -- 0 the method can be fourth order only if _2 = 7"

1 1 __ 1 l 1
Cl0 _ _ C20 -- 12w3, C21 -- 1-'_w3 _ C30 : -- C31 -- C32, C31 _--- 3 C32 _ 6w3, C40 _ _ -- W3,

2 _ 1
C41 _ _ C42 _-- W3_, C43 -- "_.

1
Clearly, c20 - - 12w_ - c21, one of these must be negative. Thus, this case does not

allow all nonnegative 3ik's, either.

[]
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